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High Fluence of both Neutrons and Charged-
Particles Induce Reactions off the line of stability

Allows multiple reactions on materials loaded in the shell
=> Reactions on short-lived unstable targets

• First neutron reactions to get off line of stability
     (n,2n), (n,3n) or double (n,2n) for proton-rich
     (n,γ) for neutron-rich

•  Followed by charged-particle reactions of interest 
      e.g., (p,γ), (p,α), …

Caveat: NIF design physicists warn that doping is possible iff
              achieve robust ignition



Currently Developing Diagnostic for Mix and
Instabilities in Ignited NIF Capsules
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Triton + 9Be ablator (t,α) reactions
distinguish different types of mix.

t+ 9Be  α + 8Li + β ( 13 MeV, 840 ms)

     NIF full Yield - 8Li production
No Mix      Chunk Mix    Atomic Mix
1x1012         3x1012         1x1014

Triton interactions with shell
material ~100mb. Mix diagnosed by
observing beta decays of  resulting
isotopes, after target disassembly.

Debris collector
& β counter.

Scheme based on using double reactions:      n+t                 t*(knock-on)
                                                                         t+shell           X(β-)

Detect 



Thoughts on using similar techniques
for Nuclear Astrophysics

• How far off the line of stability can we go?

• What can we do that we can’t do at a radioactive ion beam facility?

• How do we detect the reactants?

• How many reactions do we need for collection/detection?

• Which reactions are feasible?

• How do extrapolate from NIF flux-average the cross section 
   to those needed of astrophysicist? 



Physics Parameters for Ignited Capsule
Examined a high yield DT capsule with 9Be(.9%Cu)  ablator/shell 

Clean yield  16.65 MJ   =>  6x1018 DT reactions, ~ 6x1018 neutrons

<ρr> shell  =  0.25 g/cm2

  range  = .1 - .6 g/cm2

<ρr>capsule = 1.2 g/cm2

Also examined mixing between shell and DT 
Mix varied as a parameter - the mixing length

                                           

        α=0.06  =>  Y=  9.5 MJ                                                  
        α=0.12  =>  Y=  5.2 MJ
  

Reaction estimates scale with yield and <ρr>
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Neutron Spectrum
 Neutron spectra at DT fuel/shell interface

 Different yields and shell/fuel mixing result in similarly shaped spectra

10% < 14 MeV peak
0.3% > 14 MeV peak (RIFs)



Neutron Reactions

(n,2n) reactions best potential
Typical cross sections  ~ 1b at 14 MeV

Single (n,2n) ~   1016 reactions
Double (n,2n) ~  1012 -1013 reactions

Some heavy nuclei (n,3n) ~ 1b@ 14 MeV

However, for many nuclei of interest
neutron binding is high
 => (n,2n) threshold > 14 MeV

 e.g., 32S; 24Mg, 16O; 19F, ……

1016            ~ 1013 or less



Other Neutron Reactions also Possible

 The so-called direct-semi-direct
contribution to neutron capture yields a
capture cross sections ~ 1mb @ 14 MeV
    => ~ 5x 1013 reactions

Inelastic (n,n’) scattering to isomers
    => 3x1015

Threshold for (n,3n) is often too high to get
a significant number of reactions

Double (n,2n) often better



Charged Particle Fluences

           Main Reactions

  d + t           n(14.1) + 4He(3.5)
  d + d          n(2.45) + 3He(0.82)
  d + d          p(3.02) +  t(1.01)
  t +  t           2n + 4He (spectrum of energies)
d +3He         p(14.7) + 4He(3.65)
t +3He          d(9.55) + 4He(4.77)

Thermal Broadening

Produce large fluence of energetic (MeV)
p, d, t, 3He, 4He

Can retain significant fraction of this energy 
upon reaching the ablator



Charged-Particle Fluence in the Shell
At the fuel-shell interface

p

d

n    6x1018     14.0 MeV
α    3x1018      0.4  MeV
p    1x1017      2.3 MeV
t     4x1017      0.5 MeV
d     3x1017    1.2  MeV 

n    5x1018     14.0 MeV
α      ~ 0              0
p    3x1015      ~50   keV
t       few         ~10   keV
d     1x1016     ~50   keV 

Outer surface of ablator

Energetic p and d can traverse the shell



Example

  Want to measure (p,γ) and (p,α) on unstable waiting point nucleus

A,ZA-1,ZA-2,Z
(n,2n)(n,2n)

Shell
dopant

Waiting 
point (n,3n)

β+

A-1,Z

(p,γ)

Detect?



Non-thermal charged particle Reactions

• A significant fraction of charged-particle reactions can take place before
thermalizing

• Energetic (MeV) cross-sections can be orders of magnitude larger than thermal

• Stopping and Non-Maxwellian component of charged-particle spectrum need
   to be understood in detail

• Probably need full Monte Carlo treatment of charged-particle transport & reaction



Number of charged-particle Reactions
Produced depends on energy & stopping

Stopping Length:
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Ratio of density of unstable targets 
to electrons n the shell ~ 10-5 -10-6

Need to integrate this over 
energy distribution of charged-particles
in the shell 

Probability of particle with energy E reacting:



Dope shell with A (stable) (say 33%)

 A(n,2n)A-11(n,2n)A-2
         => ~ 1012   produced, if both (n,2n) cross section 1b

1017 protons at fuel/shell interface <Ep> ~ 2.3 MeV

3x1015 protons make it to outer surface of shell <Ep> ~ 50 keV

 Get ~ 105 reactions assuming a 10mb cross section

                                  - (integration over p spectrum and stopping preliminary)

Simplified estimate:  Np<ρr> (A-2/A atoms) σ   =   5x104 reactions

Count Estimates



Up Scattered Charged-Particles Observed at
Omega

Stopping Length

DT Neutron

Produce p,d,t with E> 10 MeV

Escape the capsule and detected 



Emitted charged-particles are Strong
constraint on predicted charged-particle

transport, stopping, etc.

     <ρr> shell ~ 35 mg/cm2

Knock-on tritons at Omega predicted
to loose about  3.45 MeV traversing 
the shell

In reasonable agreement with experiment 



Ongoing Experimental Program Beta-Mix

n

Debris collector
& β counter.

MeV Triton interaction with shell material ~100mb.
Observe beta decays of resulting isotopes, after target disassembly.

t 9Be

Main Reactions
NIF:      9Be(t,α)8Li (β-, 840ms)
             9Be(t,p)11Be(β-, 13.8s)

Omega: 13C(t,p)15C(β-, 2.5s)
              13C(t,α)12B(β-, 21 ms)

All high-energy β’s ∼ 10 MeV



0.5 ns      Omega  (15 cm)
3.5 ns       NIF        (1 m?)

160   ns
1000 ns

 430  ns
2900 ns

DEBRIS COLLECTION CHALLENGES
• Need high efficiency and sufficient solid angle.
• Induced radioactivity must be low.
• Must survive the radiation and shock wave.
• Must be able to assay debris fraction i.e., bomb fraction.
• Overcome hohlraum issues



Fielded β-detector with 30 ms recovery

Observed β-decays with half-lives as
     short as 12B

Preliminary measurement of 300 µb, 12C(n,p)12B cross section at 14 MeV.

Observed 15C(2.45 sec β-) from the 15N(n,p) reaction - extracting cross section

First debris collection experiments fielded using labeled 13C targets.

Debris collector mass measurement sensitivity better than 0.5 nanograms.

Fit: t1/2 = 20.3 msec

Progress using the Omega Laser Facility



Reactions in the Hohlraum

 1019 neutrons   =>   ~1015 reactions for 1b cross section
                                 ~1011 for double reactions

• Baseline design is cylindrical       
75%U, 25%Au cocktail

• Wall thickness is 30µm, of which 7µm is
the cocktail

• Possible to use other materials for the
wall backing without affecting the yield



Summary

• Fluence of neutrons and charged particles suggest that double and triple
reactions produce significant yields

• Reactions of interest very challenging - triple reactions maybe too small

• Significant progress being made to develop experimental techniques at Omega

• Can measure reaction products with lifetimes ~ tens msec

• Energetic of charged-particles traversing the shell high

• Need accurate tools to extract the desired thermal cross sections from flux-
averaged measurements

• Reactions in the hohlraum may be a possibility


